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Abstract. We present a new method for extracting crack-free isosurfaces from adap-
tive mesh refinement (AMR) data. This method builds on prior work, which utilizes
dual grids and stitch cells that fill the resulting gaps. To simplify implementation of
stitch cell generation, we propose a case-table-based approach. The most significant
benefit of our new technique is that it uses ghost data to handle parallel isosurface ex-
traction in a distributed memory environment efficiently.

1. Introduction

Many physical phenomena, such as star formation, occupy vast regions of space. These
areas have extreme variances in spatiotemporal scales, i.e., some areas are fairly homo-
geneous while other areas may change rapidly. To represent these domains efficiently,
simulations must adapt the resolution to local features. The block-structured adaptive
mesh refinement (AMR) approach introduced by Berger & Colella (1989) addresses
this challenge by creating a hierarchy of axis-aligned rectilinear grids, which are com-
monly referred to as boxes. This representation requires less storage overhead than
unstructured grids—it is only necessary to store the layout of all grids with respect
to each other since connectivity within each rectilinear grid is implicit—and makes it
possible to represent different parts of the domain at varying resolutions. Due to its ef-
fectiveness, an increasing number of application domains use this simulation technique.

This hierarchical representation of AMR data makes data analysis particularly
challenging. It is necessary to take into account that a finer box may invalidate and
replace the value of a given grid cell. A greater challenge is in handling transitions
between hierarchy levels such that no discontinuities appear at the boundaries between
refinement levels. Like in many hierarchical data representations, cracks in an extracted
isosurface arise due to T-junctions between levels. These cracks distract from a visu-
alization’s exploration- or communication-oriented objective and introduce questions
of correctness. Furthermore, they affect the accuracy of quantities—such as surface
area—derived from an isosurface.

Our goal was to design an algorithm for crack-free isosurface extraction that works
in a distributed-memory setting. We view the ability to run analysis on the system
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that generates the data as a key requirement. Although some sufficiently high-memory
systems do exist to handle large data sets, the transfer time from the distributed-memory
supercomputer to this remote shared-memory system is generally prohibitive.

2. Related Work

Isosurface extraction using the marching cubes (MC) method—developed by Lorensen
& Cline (1987)—is a common building block for the visualization and data analysis
of three-dimensional (3D) scalar fields. A correct MC implementation, such as the
work by Nielson (2003), produces watertight, closed isosurfaces when applied to single
grids. However, it often exhibits cracks in the resulting isosurface when applied to
hierarchical data representations. This problem was first observed and fixed for octree-
based multiresolution data representations, e.g., by Shu et al. (1995) and Westermann
et al. (1999).

Most AMR simulations produce cell-centered data, and only re-sampling to a
vertex-centered representation leads to T-junctions. The approach developed by We-
ber et al. (2003) changes the grids to the dual grids formed by the cell centers of AMR
boxes, thus making it possible to utilize original values from the simulation and to avoid
T-junctions. Moran & Ellsworth (2011) generalized stitch cell generation by removing
the restriction requiring a distance of a least one cell between the child level and parent
level boundary, making crack-free isosurfaces available to a wider range of AMR sim-
ulations, such as Enzo astrophysics simulations. Fang et al. (2004) developed a crack-
free isosurface extraction approach that preserves the original grids, which is useful for
debugging purposes. These approaches all operate in a serial setting and assume that
they have access to data values of all boxes in the simulation at the same time. This
assumption makes them unsuitable on massively parallel distributed memory machines
predominantly used by current simulations.

3. Implementation

Our new approach, described in greater detail in Weber et al. (2012), extends from prior
work using dual grids and stitch cells to define continuous interpolation and isosurface
extraction simplifying its implementation by using a case table. The main design goals
for improving this approach were: (i) enabling data parallel stitch cell generation and
isosurface extraction that operate on individual AMR boxes separately, and (ii) main-
taining a rectilinear grid representation as long as possible.

Like in prior work, we use dual grids—connecting the cell centered values pro-
duced by the simulation—and stitch cells filling the gaps between those dual grids—
see Figure 1. Stitch cells connect a box to its neighboring boxes in the same level,
or containing/adjacent boxes in the coarser parent level. To construct stitch cells and
assign values to their vertices, we require access to adjacent samples in boxes. To facil-
itate parallelization, we utilize ghost cells, a concept originating from simulation. By
extending grids with a one-cell wide layer of cells and filling these cells with values
from adjacent grids or the next coarser level, all data required to construct stitch cells
are available locally, and it becomes possible to process AMR data on a per-box basis.
Ghost cell generation is the only step in our approach that requires global communica-
tion between distributed memory nodes.
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Figure 1. Extraction of crack-free isosurfaces from a 2D AMR data set. (Left)
Extracting contours using the standard marching cubes approach after re-sampling
cell centered AMR data to grid vertices (grid shown as light gray lines). The resulting
contours show clear discontinuities at the boundaries between levels. (Right) Using
original simulation data by using the dual grid connecting cell centers and filling
resulting gaps between levels with procedurally generated stitch cells yields contours
continuous at level boundaries.

Stitch cells correspond to linear VTK cells (hexahedron, pyramid, wedge and
tetrahedron) with values specified at the defining vertices. To produce stitch cells, we
consider the dual grid for a box formed by connecting the values at all cell centers—
including ghost cells. The resulting dual grid contains two types of cells: inner cells
that contain only vertices within the box and boundary cells that connect to at least
one value in a ghost cell. To generate stitch cells, we iterate over all boundary cells and
map them to the appropriate stitch cells using a single case table. This mapping to linear
VTK cells is determined by the coarse/fine level configuration of vertices analogous to
the way that the mapping to triangles in MC is determined by the above/below isovalue
configuration of vertices. Using a single case table improves the original approach by
making it easier to implement and maintain in visualization software.

In simulations, ghost data is normally used at the boundaries to support, e.g., the
computation of gradients using only data locally available. For visualization purposes,
these cells are typically blanked out, or any generated geometry corresponding to them
is removed. It is possible to use a similar concept to handle cells in a box that are in-
validated by a finer resolution box. Instead of removing individual cells from a box, by
either converting boxes to unstructured meshes or a set of boxes that leaves out refined
regions, it is more computationally and storage efficient to keep values in these cells
and mark them as “ghost.” This gives rise to a new type of “ghost cell,” i.e., one ghost
cell marked as invalid because there is a more accurate data representation available.
We handle ghost data at the boundaries as well as ghost data due to invalidation by finer
grids, by using an array of flags that specify for each grid cell whether it is a ghost cell
or not. If a cell is flagged as ghost, the flag also specifies its type. All visualization
algorithms operate on the original rectilinear grids and use the ghost array information
to blank out ghost cells. This is the standard implementation in VisIt. In the dual grid,
a cell is marked as ghost if any of the cells in the original grid corresponding to its
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vertices is labeled as a ghost cell, i.e., if it connects any samples that are flagged as
invalid.

4. Results

Figure 2 illustrates applying our method to extract an isosurface corresponding to the
shape of the heliopause. The upper row shows the cracks that result from re-sampling
to vertex centered data. The lower row shows the same isosurface extracted using our
parallel stitch cell generation approach that eliminates discontinuities in the isosurface.

To test the scaling behavior of our algorithm, we examined results from two data
sets on the Hopper system at the National Energy Research Scientific Computing Cen-
ter (NERSC). The first data set is a relatively small 3D BoxLib AMR simulation of a
hydrogen flame. It consists of 2,581 boxes in three hierarchy levels containing a total
of 48,531,968 grid cells. The simulation data size for all 22 scalar variables is 8.1GB,
which is approximately 377MB per scalar variable. Figure 3 highlights the difference
between an isosurface extracted from a re-sampled data set and the continuous isosur-
face provided by our new approach. We stored this data set on the local scratch file
system.

The second data set is a larger 3D BoxLib AMR simulation of a methane flame.
This data set consists of 7,747 boxes in 3 levels containing a total of 1,525,420,032
grid cells. The data set has a total size of 592GB for 52 scalar variables, which cor-
responds to a size of approximately 11.4GB per scalar variable. We stored this data
set on the global NERSC file system. Both data sets were provided by the Center for
Computational Sciences and Engineering (CCSE) at the Lawrence Berkeley National
Laboratory (LBNL).

In these experiments, we saw excellent scaling of the stitch cell algorithm, as well
as of the following contouring operation, even on the small data set. Unfortunately, we
reached the best overall performance with this visualization pipeline at only 120 cores.
Although disk I/O is one factor limiting the scaling in this example, the main bottleneck
is the ghost data generation phase, as we see its runtime increase with core count.
Using a simple model that assumes two fixed transfer rates for intra- and inter-node
communication time, we found that the increased amount of ghost data duplicated in
the distributed-memory setting explains the increase in ghost communication time. We
also examined performance of this same visualization pipeline on the larger methane
flame data set. The results showed a significantly better scaling performance for total
runtime on this larger data set than on the smaller hydrogen flame data set.

Conclusions

Our approach extracts crack-free isosurfaces in a distributed-memory setting encoun-
tered on many DOE high-performance computing platforms. It is deployed as part of
the VisIt visualization tool, which makes it easily available on these platforms. AMR is
used for a wide range of DOE relevant application domains (fusion, astrophysics, cli-
mate, carbon sequestration), and the ability to extract “correct” isosurfaces benefits data
analysis in all these areas. Furthermore, our dual grid and stitch-cell based approach
can be used to improve other visualization algorithms (e.g., volume rendering) as well.
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(a) Isosurface with cracks (b) Close up view of region in rectangle

(c) Isosurface without cracks (d) Close up view of region in rectangle

Figure 2. Crack-free isosurface example for interstellar magnetic field strength
and shape of the heliopause. The colored slice shows interstellar magnetic field
strength, and the isosurface illustrates the shape of the heliopause as the result of the
solar wind interaction with the local interstellar medium. (Data courtesy of Sergey
Borovikov, UA Huntsville)
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(a) (b) (c)

Figure 3. Isosurface (temperature of 1225K) for the hydrogen flame data set. (i)
Close-up view of the isosurface extracted via re-sampling to a vertex-centered for-
mat. Cracks are easily visible. (ii) Close-up view of the same region extracted using
our new method. There are no discontinuities in the isosurface. (iii) View of the en-
tire crack-free isosurface extracted using our new approach. The isosurface consists
of approximately 2.2 million triangles.

Finally, this approach could form the basis for deriving topological structures like the
contour tree from AMR data.
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